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• Advances in artificial intelligence (AI), geospatial technologies and 
data are revolutionizing the generation of granular insights into flood 
and drought risks in Cambodia.

• These insights are transformative for risk-informed planning, budgeting, 
and targeting of disaster preparedness and response efforts. 

• They will strengthen implementing frameworks of Disaster Risk 
Reduction (DRR), Early Warning for All (EW4All), Anticipatory Actions 
(AA), and Shock-Responsive Social Protection (SRSP).

Key messages
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Cambodia is on the frontline of heightening risks from floods and droughts, 
both of which have severe socioeconomic impacts. Over the past two 
decades, these disasters have caused an estimated average annual 
economic loss of USD 148 million1. 

But the risk does not end there. The cascading socioeconomic repercussions 
of the COVID-19 pandemic, coupled with volatile global food and fuel prices, 
have pushed many households to the brink of vulnerability. Climate change 
is poised to magnify the frequency and severity of these recurring disasters, 
turning them into existential threats that impede social and economic 
developments. By 2050, climate change could shrink the national Gross 
Domestic Product (GDP) by an estimated 3.0% to 9.4%2.

Now more than ever, a comprehensive understanding of flood and drought 
risks is not just essential—it is urgent. Risk-informed decision-making is 
crucial for driving disaster risk reduction and resilience-building to ensure 
Cambodia can withstand future climate shocks. Yet, current information on 
disaster risks lacks detailed granularity needed for effective planning at the 
commune level.

To bridge this gap, the United Nations World Food Programme (WFP) and the 
National Committee for Disaster Management (NCDM) in Cambodia are 
harnessing artificial intelligence (AI), and geospatial technologies and data to 
generate profound insights into household vulnerabilities and the risks they 
face from floods and droughts across the country.

1  Economic impact from the UNDP’s Disaster Financial Preparedness Analysis Report, 2023
2  Cambodia Country Climate and Development Report, The World Bank Group, 2023

Time to Act: The Clock is Ticking 



Comprehensive disaster risk assessment framework
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Risk modeling hinges on understanding the interaction between climate 
hazards, exposure, and vulnerability. This was adapted from the widely 
recognized risk conceptual framework from the 5th Assessment Report of 
the Intergovernmental Panel on Climate Change (IPCC).

A climatic hazard is defined as a potentially climate-induced events with the 
potential to cause loss of life, injury, property and infrastructure damage, or 
environmental degradation. This assessment focuses on flood and drought 
probabilities and their spatial distribution. Exposure refers to the presence 
of people, property, livelihoods, or critical infrastructure within flood- and 
drought-prone areas that could be adversely affected. Vulnerability 
describes the socioeconomic capacities and resilience of household to cope 
with, adapt to and recover from the impacts of floods and drought. 

Recent advancements in geospatial technologies, artificial intelligence (AI), 
and cloud-based computing platforms such as Google Earth Engine (GEE) 

AI and Geospatial Technologies: A New Frontier in Risk Modeling
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offer a novel approach to climate disaster risk modeling, allowing for a 
generation of granular, up-to-date risk information—right down to the 
localized level—a challenge that the traditional methods struggle to achieve.

Geospatial technologies such as geographic positioning systems (GPS), 
Geographic Information System (GIS) and Earth observation (EO) satellites 
and airborne remote sensing platforms, enable increasingly production of 
high-resolution and quality geospatial data, characterizing precise objects, 
events, and patterns on the Earth’s surface.

Artificial Intelligence (AI) is the ability of computer systems to imitate 
human thinking processes, like learning and solving problems. Machine 
Learning (ML), a subfield of AI, utilizes statistical algorithms to learn 
patterns from data, enabling to make accurate predictions in areas where 
data is missing. One common supervised ML method is the Random Forest 
(RF) algorithm, which creates multiple decision trees by randomly selecting 
variables and sampling data, enabling accuracy in classifying information 
from large geospatial datasets. However, using AI and geospatial 
technologies comes with challenges, such as needing good-quality training 
data. Without accurate ground data, ML models can produce unreliable 
results. As well, there is a need for more transparency, ownership, and trust 
in these technologies among stakeholders.

Additionally, Google Earth Engine (GEE) is an open-source, cloud-based 
computing platform that stores geospatial data from many sources. It 
enables the upload of external data and includes built-in algorithms, such as 
the machine learning Random Forest (RF).

This assessment utilized the machine learning RF model and spatial analysis 
tools on the GEE platform to process and analyze geospatial and survey-
based data, allowing a thorough quantification of flood and drought hazards, 
exposure, socioeconomic vulnerability, and risk at the commune level.

Recent advancements in geospatial technologies, 
artificial intelligence (AI), and cloud-based 
computing platforms such as Google Earth Engine 
(GEE) offer a novel approach to climate disaster risk 
modeling, allowing for a generation of granular, 
up-to-date risk information—right down to the 
localized level—a challenge that the traditional 
methods struggle to achieve.
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Foreseeing future disasters from historical events
Flooding occurs when water overflows its usual boundaries, such as those of 
a river or lake, or inundates typically dry land. In this study, flood hazard was 
assessed using a machine learning model trained on historical flood events 
and flood susceptibility factors derived from geospatial data such as 
topography, hydrological networks, rainfall patterns, soil properties, 
vegetation cover. The assessment focused on the Cambodia’s peak flood 
season (August to November) over the past 11 years, capturing both riverine 
and flash flood events. The model produced pixel-level indices indicating 
inundation frequency and locations. The final flood probability index was 
generated by adjusting for areas with permanent surface water and 
aggregating results at the commune level.

This Earth observation imagery illustrates flooding along the Mekong River in the provinces of Kratie and 
Tboung Khmoum in 2024.

The modeling workflow for assessing flood hazard



6

A drought is defined as a period of abnormally dry weather characterized by 
a prolonged absence or deficiency of rainfall, leading to a serious 
hydrological imbalance. Accessible long-term geospatial data on rainfall, 
temperature, water surfaces, and vegetation enable to quantify drought 
hazard using indicators such as Standardized Precipitation Index (SPI), 
Temperature Condition Index (TCI), Vegetation Condition Index (VCI), and 
Normalized Difference Water Index (NDWI). The assessment considered wet 
and dry seasonal variability over more than past 20 years. These indicators 
were normalized and combined to produce probability of a multiple-drought 
index at the commune level. 

The workflow for assessing drought hazard

Pinpointing who and what could be affected
Key attributes, such as population, agricultural land, building footprints, and 
infrastructure, were essential for identifying those most at risk from floods 
and droughts in this assessment. Advances in geospatial technologies have 
enabled the availability of more precise, up-to-date datasets, generated from 
satellite imagery using machine learning algorithms trained with field 
reference data. To assess exposure for risk modeling, indices were 
developed by normalizing and combining these data points into a single 
index.
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This visualizes human settlements in Phnom Penh, extracted from Earth observation imagery, which is 
critical for understanding exposure.

The workflow for assessing exposure
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Granularity in vulnerability Assessment
Households' social and economic capacities and resilience to cope with, 
adapt to, and recover from floods and droughts—defining socioeconomic 
vulnerability—can be measured using national survey data such as the 
Cambodia Socio-Economic Survey (CSES) 3. However, such a survey is often 
not statistically representative at the commune level. To address this gap, 
the study developed a model for assessing socioeconomic vulnerability in 
three main phases, estimating information at the commune level where 
survey coverage was limited:

• Phase 1: Household vulnerability status was measured by a 
combination of indicators assessing household economic capacity to 
meet essential needs, current food consumption, and food- and 
livelihood-based coping strategies. Relationships between household 
demographic and socioeconomic characteristics and their vulnerability 
status were then examined.

• Phase2: A machine learning model, trained with the demographic and 
socioeconomic factors identified in Phase 1, and input with geospatial 
data (e.g., nighttime light intensity, human settlement patterns, 
accessibility to essential facilities, land cover, surface water, topography, 
climatology, etc.) performed geospatial extrapolation of vulnerability 
determinants. 

• Phase 3: A nationwide socioeconomic vulnerability model was created 
by applying a machine learning algorithm to the findings from Phase 1 
on household vulnerability status, along with the extrapolated 
demographic and socioeconomic data and geospatial datasets from 
Phase 2.

The model output of a pixel-level probabilistic index of socioeconomic 
vulnerability was aggregated at the commune level.

3  CSES, conducted by the National Institute of Statistics (NIS) under the Ministry of Planning, provides a 
wide range of information on households, including demographics, consumption, food security, housing, 
education, health, employment, agriculture, income, and migration.
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The modeling workflow for socioeconomic vulnerability assessment

This map captures the social and economic dynamics in Siem Reap, observed by satellite, which 
contribute to understanding vulnerability.
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Turning hazard, exposure, and vulnerability data into risk insights
Risk models reveal Cambodia faces significant dual threats from floods and 
droughts, especially in high-risk communes surrounding the Tonle Sap Lake/
River, along the Mekong River, and in the southern plains. Approximately 
15% of the population and 16% of agricultural land are at risk from floods, 
while 29% of the population and 33% of agricultural land are at risk to 
droughts. These are more than just statistics—they are a call to action.

Maps visualize modelling of risks to flood (top) and drought (bottom)

Through 
innovation and 
collaboration, 

we can 
safeguard 
lives and 

livelihoods.
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• Embrace AI and geospatial technologies: Strengthening the 
capacity of government institutions to utilize AI/ML and geospatial 
technologies for data analytics will enable the generation of precise, 
timely, and actionable insights for disaster preparedness and 
response activities.

• Implement dynamic socioeconomic vulnerability assessment:
Adopting the AI-driven vulnerability assessment model outlined in this 
report as a dynamic modeling approach-integrating near-real-time 
Earth observation data and on-the-ground socioeconomic data with 
machine learning predictive analytics enables timely updates to 
vulnerability data.

• Enhance reliability of artificial intelligence (AI) in risk modeling:
Embedding geographical reference information in data collection for 
national surveys, censuses, and assessments will enhance the quality 
and availability of training data, ensuring reliable results from 
machine learning (ML) algorithms. Additionally, standardized 
procedures for capturing accurate, consistent, and interoperable 
post-disaster loss and damage data can support calibration and 
validation of risk model.

• Integrate climate projections into risk assessment: With escalating 
climate impacts, incorporating localized climate projection data into 
assessment of climatic hazards strengthens risk modeling, providing 
forward-looking information for mitigation and adaptation efforts.

From Insights to Action

To reduce risks and strengthen resilience against future disasters, four 
strategic actions are recommended for the government and development 
partners to enhance preparedness efforts:
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